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ABSTRACT: A model library containing petabytes of data is proposed by Triada, Ltd., Ann Arbor, Michigan. The
library uses the newly patented N-Gram TM Memory Engine (NeurexrM), for storage, compression, and retrieval.

Neurex splits data into two parts: all hierarchical network of associative memories that store "information" from data,

and a permutation operator that preserves sequence. Neurex is expected to offer four advantages in mass storage
systems. (l) Neurex representations are dense, fully reversible, hence, less expensive to store. (2) Neurex becomes

exponentially more stable with increasing data flow, thus, its contents and the inverting algorithm may be mass

produced for low cost distribution. Only a small permutation operator would be recalled from the library to recover

data. (3) Neurex may be enhanced to recall patterns using a partial pattern. O) Neurex nodes are measures of their

pattern. Researchers might use nodes in statistical models to avoid costly sorting and counting procedures.

Neurex substunes a theory of learning and memory that the author believes extends information theory. Its first

axiom is a symmetry principle: learning creates memory and memory evidences learning. The theory treats an
information store that evolves from a null state to stationarity. A Neurex extracts information from data without a

priori knowledge; i.e., unlike neural networks, neither feedback nor training is required. The model consists of an

energetically conservative field of unifonnly distributed events with variable spatial and temporal scale, and an

observer walking randomly through this field. A bank of band lhnited transducers fan "eye"), each transducer in a

bank being tuned to a sub-band, outputs signals upon registering events. Output signals are "observed" by another
transducer bank (a mid-brain), except the band limit of the second bank is narrower than the band limit of the first

bank. The banks are arrayed as n "levels" or "time domains, td." The banks are the hierarchical network (a cortex),
and transducers are (,associative) memories.

A model Neurex was built and studied. Data were 50 MB to 10 GB samples of text, data base, and images -

black/white, grey scale, and high resolution in several spectral bands. Memories at td, S(,m,d), were plotted against

outputs of memories at td-I. S(m,d) was BoitzJnan distributed, and memory frequencies exhibited Self-Organized
Criticality (,SOC) [Bak et al. 4,1987) Phys Rev Lett: 59, 381-384]; i.e., "If a'' after long exposures to data. Whereas

output signals from level n may be encoded with B,,_,_ = O(-logJ "_) bits, mad input data encoded with

B =pu,= O(,[S(td)/St.td-l)]"), B,_,,/B ,_ _, l always, the Neurex determines a canonical code for data and it is a

(lossless) data compressor. Further tests are tmderway to confirm these results with more data typesand larger
samples.
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I. Introduction

Electronic libraries holding 10 _5bytes (one petabyte, PB) of information are being planned. The Library of Congress'

Global Knowledge Network, NASA's EOS/DIS, the Sequoia earth science project, and seismic data collections at

major oil companies may be measured in petabyte units within ten years [1][2][3]. These large libraries will adopt

information system technologies that compress data, store and retrieve information from very high density storage
devices, and answer queries using knowledge of the information in the library. The Neurex TM memory engine for

mass storage applications, being developed by our firm Triada, Ltd., Ann Arbor, Michigan, should provide features

large libraries will require. And it is being considered for beta installation by several large libraries. Here we
introduce the technology behind Neurex; N-Gram TM, learning and memory theory. We review the N-Gram

associative memory form that equates information with storage locations. We report results of tests using data

samples provided by prospective Neurex users to show that Neurex losslessly compresses data at rates up to 200:1.
In the attachments we illustrate the N-Gram learning transform and the Neurex machine.

How will petabytes of information be stored? How will users retrieve information from a petabyte library? ls it

possible to just automate card catalogs or expand the scale of file based or database management systems? The first

question appears to have been answered. The other questions are actively debated under the rubric of metadata.

Data storage technology now can support petabyte storage systems using mini-supercomputers running UNIX and

UNITREE, redundant arrays of inexpensive disks (RAID), and petabyte libraries comprising helical scan tape

[4] [5] [6]. A large storage system model is being built at the National Storage Laboratory at the Lawrence Livermore

National Laboratory[7][8]. With it data storage technology advances from a role subservient to computers to an

egalitarian role in a network of computing devices. But key issues are unsolved, including support for high

performance computing [9].

The metadata problem requires integrating storage management with data management and current technology does

not solve the problem [I0]. First, databases do not extend to tertiary stores [11]. Second, unstructured data requires

many file names. Suppose text files are .01 MB and image files are 20 MB. The catalog for a 1 PB system then
has 1 billion names. 2.5 kilobytes per name requires a 2.5 terabyte card catalog on fast storage. The naming

problem can be experienced today firsthand. Issue a global query on Internet. It may be days before the system
contacts tens of thousands of nodes and it might not come back [12].

Meta-data is an intelligence modeling problem; data must become information. Researchers are attacking it from
two directions. We call one the Turing paradigm; the other we call the connectionist paradigm [13].

The Turmg paradigm works from the top down. One studies a phenomenon, e.g., intelligence, to deduce an

algorithm that will operate on input data and output the phenomenon of interest. Ostensibly a metadata
transformation is sought to map data into information by a finite number of instructions that can be executed on a

computer in polynomial time, and the program can be self modifying. Artificial intelligence (AI) attempts to provide

a complete solution, while database theory (DBT), information retrieval tiP,.), and information filtering (IF) attack

parts of the problem.

Although AI, DBT, IR, and IF have progressed during the past twenty years, a general transform for changing data
into information has not been discovered [14]. Notwithstanding the problems inherent in intelligence modelling,
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researchaccordingto theTuringparadigmis robustandnewpublicationsarenumerous.[15]is about(AI)
implementationissues.[16]isa classicAI reference.[17][18]reviewproblemsin imagerepresentationand
understanding.[19]andaccompanyingarticlesreviewdatabasetheory.[20]definesageneralIR systemmodel.
[21]explainsbasicconceptsinIRandcomparesthesewithIF,and[22]reviewsanAIapplicationattheU.S.Census
Bureau.Anintriguingextensionof AI learningmodels,whichhasaflavorof fuzzylogicandposesinteresting
issueswhenjuxtaposedwithsemanticlogic,isrelevancefeedbacktheory[23].Finally,noreviewofAI iscomplete
withoutreferencingJapan'sFifthGenerationLanguageProject[24].

SolutionsfollowingtheTuringparadigmthatemployindexingmethodscouldexacerbatethestorageproblem and
not solve the metadata problem. Database keys and indices within text and images must be in primary memory but

primary memory costs are high. If indices measure 101° bytes and more, total system costs could measure ($ U.S.)

l0 7 or more. Indices in tertiary storage expand storage costs and they are useless until data is moved to primary
storage.

The connectionist paradigm works from the bottom up and is a branch of cellular automata theory. Cellular automata

are "discrete dynamical systems whose behavior is completely specified in terms of a local relation" [25]. The

phenomenon exhibited by a cellular automaton is expressed by a behavior rule for the individual components. Hence,

a researcher who wants a cellular automaton to act intelligently must discover a local relation that globally will make

the automaton seem intelligent. Most current research defmes local relations as either the spin glass model of John

Hopfield, or the Boltzmann machine model ofTerrence Sejnowski [26][27]. An alternative to the energy function

models is the autocorrelation model [28]. Kevin Knight surveys the field, and he contrasts the Turing and

connectionist paradigms [29]. Three survey works are [30][31][32]. Self-organizing systems and a review of

several of the problems mentioned here is in [33]. Marvin Minsky wrote rules for a novel automaton that departs
from the connectionist model [34].

The connectionist paradigm also does not solve the metadata problem. First, memory is not invertible and given the

continuous functions of the local relations the capacity is unknown in general [35]. Second, neural networks can

fall into spurious minima and not yield correct answers [36]. Third, they are not entirely bottom up because behavior

derives from a priori training procedures. Example: A network taught to recognize type written characters will not

recognize hand print. [37] gives a more complete introduction to problems in machine learning including an
introduction to the literature of machine learning paradigms.

The above argues that the metadata problem cannot be solved following either the Turing paradigm or the

connectionist paradigm. The crux of the metadata problem is that its solution may depend on answering a more

profound question, what is meaning, which begs another profound question, what is mind? [38] Study of these go

to the heart of philosophical enquiry dating back to antiquity, and have been investigated by the world's greatest
minds: in jargon, the problem is _ non-trivial.

Triada is developing what we believe to be a robust solution to the metadata problem. It is obtained by attacking
the metadata problem as a learning transform problem. Learning in our model is a metric tensor that under suitable

conditions reversibly maps vectors of data into memories that are forms, i.e., information, and thus departing

philosophically from the above paradigms. We study a general model of an observer equipped with a bank of band

limited transducers attached to a hierarchical memory structure. The observer randomly walks through a region

bounded by its lifetime and containing objects that reflect photons thereby allowing the observer to "see" the objects.

The observer's input transducers register events within their frequency band limit by outputting a signal to the

discrete learning transform. A set of ordered signals is a vector that is mapped into a memory form by the learning

127



transform.Thesetof allformsrecordedthiswaydescribethepathtakenbythe observer, and transforming these

into their dual space equivalent constitutes a faithful memory of the objects along the path in the neighborhood of
the observer. Thus, memories are p-forms and electromagnetic events are n-vectors. Our conclusion is that

information is a form while data is a vector, and the learning tensor is the desired metadata transform, that is,

memory and information are the same phenomenon. The transform in hand we introduce the Neurex memory engine
that embodies it. We present results of tests using a Neurex prototype and discuss the benefits afforded by this new

technology. In particular, we will show results indicating 85:1 compression of text and 341:1 of fax image data.
We will conclude with a review and talk about future research directions.

2. N-Gram Learning and Memory Theory

The learning transform acting on a field of electromagnetic events and registering differential patterns, or forms, is
called a Poisson process [39]. Individual memories accumulate at each level of the memory hierarchy at a rate that

decays exponentially, their probability of occurrence within any subregion of the entire region bounded by the
observer's lifetime is Poisson distributed, the length of the path required to completely map all objects into the

observer's memory is gamma distributed. Because sums of Poisson distributed random variables are Poisson

distributed the growth of the entire memory is readily characterized.

Energy values (,the memory forms) as memory is well accepted; minimal energy states are memories in both Hopfield
and Boltzmann neural networks. Recently Friedland and Rosenfeld recognized a class of objects using an energy

function [40]. Their work followed Geman and Geman who showed the Gibbs (Boltzmann) distribution and the
characterization of an image as a Markov Random Field (MRF) were equivalent, where an image is a pair of

matrices, the matrix of grey levels, and its dual, the edge matrix. Eugene Margulis applies a related concept in

multiple Poisson models of word distributions in full text documents [41]. He demonstrated empirically that the

meanings of particular words are multiply Poison distributed according to distribution parameters rq and _,_;where
i counts the number of subjects, ni is the probability the i'th subject is covered in a document, and _'i is the mean

occurrence of a word in the i'th subject.

We hypothesize the existence of measures _,_ of local infornmtion content, and other measures l_,a of global

information content. The measures _._ are the boundaries of the r volumes that contain the _._, both sets of
measures are found during a point-wise continuous random walk through all parts of an energetically conservative

data field. Should a path of the walk be restricted to a surface of constant energy then only events with the same

information will be found. But, these are elementary results in probability theory where the gamma and Poisson

distributions are shown to be related, and the Boltzmann distribution is a special case of the gamma distribution

[42][43]. In particular, the sum oft Boltzmann distributed random variables with parameter Z. is gamma distributed
with parameters (t, _,), and the probability that there are k occurrences of an event, say a particular word appears

in an interval of length t is Poisson distributed. The equivalence of Markov and Poisson processes then obtains by

[44]. Hence Markov ¢:_ Boltzmann ¢:_ Poisson.

The N-Gram memory model is an elementary implementation of the above ideas. A data stream is input to the

N-Gram algorithm. The stream is parsed into sets of words according to rules that are empirically determined to

be appropriate for the data type. The processor receiving the input word pattern searches its local memory is to

determine if the input word pattern has previously occurred. If it has previously occurred, a counter is incremented

and a signal representative of the storage location of the pattern is output to the subsequent processing level. If the

pattern has not previously occurred, it is assigned a place in storage, a signal representative of its new location is

output to the subsequent processing level, and a counter is incremented to the value 1. The signals output to the next
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processingstagearesimilarlytreated.

Wewantto know the size of the output stream after n levels and we want to know the size of the hierarchical

memory after x bytes of data have been read. We first determine the size of the memory structure.

The N-Gram Memory can be represented an arrays of numbers. The numbers may be from the set of integers (I),

rationals (Q), real (R), or complex (C). Elements in each row, or level, in the network are mapped into the level

immediately above it, and each element in a level is the image of a mapping of elements in the level immediately
below it. Let us assume that the level elements are rank ordered by relative frequency from most to least frequent)

Let X be a data stream comprised of signals _, 0 < j < 3, 3 a nonzero integer, from a nonempty range of signals
measured by (real or complex valued) frequencies,f, < g'<_ 0 < 1_-f,[. Thus, _ is a signal (.most commonly,

an n bit binary code) representing any frequency in thej'th partition of the range I.fI -f / 3. Define a recognition

event in an N-Gram Associative Memory Network as the image of a function [8 from any nonempty string S of

signals _ along a data stream X. Hence, in the most general case, the N-Grana Associative Memory Network is the
codomaln of [8 where the domain of [8 is any "piece wise continuous" stream of signals.

Now, let T = [t,n,r t,,,,_l I be any nonzero time interval. Let [8 be any invertible function that rank orders its image

by relative frequency, from most to least frequent. Above we said the N-Gram Memory, N, can be represented by
an array of size CI,,_ by TD with integer elements. Let the first level of N be the image of [8 operating on a data

stream X comprised of signals _, where each signal is n bits long. Suppose [8 begins sampling X at time t,n,,ot by

consistently selecting s, s E I, 0 < s, nonoverlapping contiguous signals from X. Hence, every S' has word length
W = s x n bits. Let x,, x_ E I, be the number of words S _ sampled by [8 during an interval T. Note, x _ = 0 at time

t,_,_. Then the first level of N, M_, is the set

M_ = { ,nz., [m,,, = [8(.S'); [a [ < Ira,., ] < [b l; a, b, and n,,., _ R }, where

lib[ - ]all _>FCl_,._(l)l, Clm_,(l) is an empirically determined constant, and F "] is the greatest integer
function.

We call an element m_., a "memory," and the level number is td, 1 <_td < TD. Note, also, that [8 is invertible and

its image is discrete mid rank ordered, therefore, without loss of generality we define a new function I that substitutes

for each m_., its integer position, i.

Define the second level in N like the first level as the rank ordered image of [8, m2, = [8(.S:). Here S" contains s2

contiguous signals g'from a data stream X. Every S: is now a digital word of length W = s_ x n bits. Suppose, we

define a binary function [8", that has as its image the position values i of the elements of the second level M e of N,

and [8" takes as its arguments the two recognition events (position values) of the elements of the first level A,I_of N
that are the level one images of the first and second halves of the signal S:. Let S_(xJ_) and S_(xJJ be the first and

second halves, respectively, of a signal S" from X: u and v are indices. Then,

i2 = I(m.,.O = _*[ _(k,I) ] = _'[ _( n,_,k ), _( ,nj., )] =

f_'[ f_( S'(x'J), _( S'(x_d)] = f_[ S'(x_J /k S'(X_) ] = _[ S" ], where/_ is the concatenation operator.

Therefore, the second level of memories, M: in N, is the set M., = { i, [ i, = I_m_,,) = _{ S") = f_'(p.q) },

where p,q are recognition events in level one, i.e., p = _(S_(x_,) and q = f_(S_(x_j;

If the m, are integers, i.e., m, E I, then [8 is an indexing fimction. If the elements of the array are real

(or rational), i.e., m, E ]1 (Q), and a = 0, b = I, and the relation above is a < m,, then [8 is a correlation
function. If the elements are complex _ is a contraction.
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i2eI; lal < Im,.,I< lbl;a,b, andmz, ER}; tlbl-lal[ ->l'Ct_(2), andCl_,(2)'], is an empirically
determined constant

We can now define any memory level as the ordered set of integers M. = { i_d t i_d= I(mj = _{S _) -- _Lr(p.q) },

where the signal S_ is a binary word of length W = s_ x n bits; p.q are recognition events in level td - 1;

i,de I; [a I < l m,_.iI < lb l; a, b, and m_., e R }; [ lbl - l a I I -> rCl_(td)], and Cl_(td) is an empirically
determined constant.

N-Gram technology is the study of the N-Gram Memory to better understand human knowledge, and to invent and

develop more efficient information management systems. We obtain the empirical constant Cl_,_(td)

CL,...(td) - C_x,) (1)
(1 - e-_%

where, X is the mean of the information density of the dataX, Cl(x _) are the number of memories accumulated after

x _ events, and 0 _ x _ is the number of nonoverlapping contiguous signals S u from X.

Equation (2) shows a relationship between the relative frequency of a memory at level td, m.._, and its rank in the
relative frequency ordered list of memories at that level. This equation is related to (1) by the information mean

density value, X.

2 _, = fc,i Nc,i ,

WhenCe,

l(mro ) = iro = [ZXl,
yc

(2)

_ is the (relative) frequency of the memory rn,_ and c is the class number, therefore, N_, is the i'th memory at level

td. c = V log2(f';) "]. The total number of classes, Cu, that form at level td is exactly

c. r 1-f_°= I (3)
2_.

Therefore, the total number of memories at level td, is

where f' is the class frequency.

ct_(_O
c_

=2_, Ef -c,
c. ffil

(4)
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SupposeXhas a density Z. at every td 2. Then using either (4) or (1), we calculate the number of memories in N
formed after it has observed X. The length of X, IX[, must be much longer than CI_(TD), the number ofumque

signals Sr_ that occur inX; say that the length of Xis greater than an integer N > 10: i.e., let the bit length measure

be IX[ > N CI_,(TD) (s td x n). Thus, the number of memories M contained in a network N is M = TD x Cl_,(td).

The N-Gram algorithm N"

(i) parses a data stream X into signals S,a that are binary words of size W, as defined above,

(ii) maps every S,_ in X into one and only one element re,a,, of N', and
(iii) outputs a data stream N'(X) = mr_,,(x), where x is the number of signals SrD input to N', and the

output is ordered as x = 1,2,3 ....

Each signal Srv has word length W. The length of an output word N'(X) is IIy = [- Ioga(CI,_(TD)) ]. Hence, the

density improvement ratio 0 achieved by N" as it processes X is simply, 0 = W/W'. If N contains fewer than M

memories then the density improvement ratio is degraded by a factor r, where r is of the order Ou(r) = 2c÷',

where td is the lowest level at which Cl_x) < Clm_x(td), and c is the corresponding frequency class. In this case the

density improvement becomes (1-O(r))O = W/(W'+r'), where r'= log2(Clu(x)).

3. Neurex System Tests

The machine embodiment of N-Gram learning and memory theory is called Neurex TM and it is patented [45]. Two

prototype Neurex were built and tested using samples of data to (1) test predictions of N-Gram Theory, (2) measure
memory populations, and (3) determine performance parameters. They were not designed to benchmark I/O

performance nor to reduce data samples for compressed storage. Rather, both were designed to gather statistics to
determine the relationship among the size of the memory structure, the amount of density improvement obtained with

a given memory structure, the amount of physical storage that would be needed for a memory structure, and the

distribution of the memories within lists of memories created by the N-Gram algorithm.

The first prototype was a set of boards with four Inrnos Transputers installed in a 500 megabyte solid state disk

(SSD) loaned to us by Zitel Corporation. The N-Gram algoritinn was written in the "C" programming language.

The SSD held a partial N-Gram Memory. The Neurex was linked by serial ports on the Transputers to Transputer
boards installed in two IBM AT compatibles. The compatibles provided the programming environment, and they

were used to load programs and test software, to supply test data, and to hold statistics gathered during test runs.

The N-Gram algorithm mapped pattems in the input data stream into the N-Gram memory array stored in the Zitel

RAMDisk. Two memory classes were created: those having met a predetermined threshold value and which are

stored permanently, and those which have not met the threshold and are stored temporarily. Memories that have not

met the threshold value, and are thus kept temporarily, are eventually excluded into the output stream. Memories

that have met the threshold value are mapped into the next higher level in the memory array to determine more

complex features in the data stream. The amount of space available for memories bounded the length of the data

stream that could be viewed; i.e., a window was created that reduced the exposure of the Neurex to low frequency
data pattems slowing the growth of the permanent memory structure. The prototype permitted periodic measurements

The assumption that the mean information density exists over a range of levels TD, is valid whenever

the longest signal Sro is small compared to the "field of view" of an N-Gram associative memory
network N.
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of the memories accumulated as a function of the number of events.

We also built a prototype consisting of N-Gram algorithm running on a Convex mini-supercomputer. Convex

provided time on their laboratory machines and access to tape drives to load large data files. The algorithm was
modified to process data in sections where every section contained only those data stream patterns that would be

within the section of the memory structure in the primary memory.

Description of Test Data Samples

We tested samples of text, 10 bit four color images, black/white images, travel time data, data base data, a 10

gigabtye sample of 32 bit floating point numbers from a numerical analysis project at NASA Ames, and multiple

spectral band data from the LandSat and NOAA 12 satellites. The text sample was 1.5 gigabytes of ASCII coded
files from the University of Michigan's collection of weekly USENET lnternet service articles. A 1 gigabyte sample

three of LandSat scenes was provided by NASA Goddard Space Flight Center. A single scene consists of seven

roughly equal sized segments, each of which represents a spectral view of the same area on the surface of the earth
as viewed from the LandSat satellite. The black/white fax images were a 3.2 gigabyte sample of bank check images.

The relational data base contained typical corporate records. The sample was 4.4 gigabytes long.

Test Results

The tests were designed to measure the information density of the data samples, and to calculate a compression ratio

using the above equations.

The information density for each data sample was obtained and it was used to extrapolate compression results shown

in Table I. The fax image sample required approximately 500 million memories to achieve a density improvement

ratio of 341:1. The text data sample reached 85:1 with a 1.6 billion memories. To obtain a 43:1 density

improvement the commercial data base required only 280 million memories. The samples that were most dense with
information were the satellite images. We were estimated the size of a memory structure for these high resolution

images would be 3.6 billion memories and it would achieve a density improvement of 73:1. The worst performance
was with the seismic and floating point matrix samples, however, these were said to be incompressible using standard

compression techniques [according to the owners of the data).

Table I: Neurex Data Compression Performance

Data Type No. Memories Output Code Word

Length

Input Code Word

Length

Compression Ratio

ASCII Text 1.6 * 109 24 bits 2048 bits 85:1
.... d

Fax Image 5.0 * l0 s 24 bits 8192 bits 341:1

Seismic 5.2 * 107 24 bits 64 bits 2.7:1

LandSat (8-bit 3.6 * 10 9 28 bits 2048 bits 73:1

pixels)
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NOAAi i (8bit 3.6* 109 28bits 2048bits 73:1
pixels)

Commercial 2.8* 108 24bits 1024bits 43:1
Database

FloatingPoint 7.0* 10v 26 bits 32 bits 1.23:1

matrix (32 bit)

4. Neurex Model Library

A model library with 36 terabyte capacity is illustrated in the attachments. Key to the feasibility of the library are

the above compression results and the application of the N-Gram memory form to pattern recognition.

5. Conclusions

The N-Gram learning and memory model holds for a large range of data types. The compression possible with the

large memory structure is significantly greater than that achieved using state-of-the-art methods. While additional
test are required using data samples that are significantly larger than the memory structure size, given the stationarity

and ergodicity of the samples we tested there is no reason to believe a larger sample will produce significantly

different results than those given above.
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